Contamination of Chicken Meat With Salmonella spp Distributed in Mahabad City, Iran

Saman Mahdavi¹, Mahsa Azizi Dehbokri¹, Saba Hajazimian¹, Alireza Isazadeh¹,²,³,⁴

¹Department of Microbiology, Maragheh Branch, Islamic Azad University, Maragheh, Iran
²Department of Food Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran
³Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
⁴Young Researchers and Elite Club, Maragheh Branch, Islamic Azad University, Maragheh, Iran

*Corresponding Author: Saman Mahdavi,
Address: Department of Microbiology, Maragheh Branch, Islamic Azad University, Maragheh, Iran
Tel: +98-9144150454, Email: S.mahdavi@iau-maragheh.ac.ir
Published Online: May 27, 2018

Keywords: Chicken meat, Salmonella, Mahabad

Abstract

Background: Foodborne diseases are one of the fundamental problems in the world. Salmonella is one of the most important foodborne bacteria, which is responsible for the prevalence of foodborne diseases in humans.

Objective: The aim of this study was to investigate the presence of Salmonella in distributed chicken meat in Mahabad city, Iran.

Materials and Methods: In this study, 100 samples of chicken meat were selected from Mahabad city and investigated for the presence of Salmonella. Each sample was cultured in selenite cystine medium and incubated at 37°C for 24 hours. Then the obtained colonies were cultured in MacConkey agar and Salmonella-Shigella agar. Finally, biochemical and antibiogram tests were performed on isolated Salmonella samples.

Results: Totally, 7 chicken samples (7%) were found to be contaminated with Salmonella. All of the isolated Salmonella samples were identified as Salmonella enteritidis. All of S. enteritidis isolates (100%) showed the highest resistance to erythromycin and ampicillin antibiotics. All of the tested isolates (100%) showed sensitivity to gentamicin.

Conclusion: Our study showed high prevalence of Salmonella in distributed chicken meat in Mahabad city. Therefore, the improvement of health conditions in food preparation centers is highly recommended.

Received: October 19, 2017; Revised: April 12, 2018; Accepted: April 21, 2018

Background

Foodborne diseases are one of the serious problems in developed and developing countries. Every year, more than 100 million people are afflicted by foodborne and waterborne diseases in the world, especially people with immune system deficiency and malnutrition. Pathogens can survive in the food products, especially in meat, until distribution in the markets. Poultry meat is one of the most popular food products worldwide. Several nutritional factors such as high level of protein, low fat content, and favorable unsaturated fatty acid content contribute to the popularity of poultry meat, of which sensory, dietary, and economic factors are of considerable importance.

There are different types of organisms which are known to cause foodborne infections. One of the most important causes of foodborne diseases is Salmonella, which affects humans through the use of contaminated and raw meat. Salmonella is usually found in animal source foods including chicken, beef and pork meat, egg and milk. It also spreads through zoonotic transmission. Many studies have reported outbreak of Salmonella and its resistance to antibiotics in chicken meat worldwide. The prevalence of Salmonella in chicken meat has been reported to be about 6.79% to 97.6%. Some of the Salmonella species isolated from chicken meat are resistant to antibiotics and can lead to foodborne diseases. Despite significant improvement in public health, Salmonella still remains the most important cause of foodborne diseases worldwide. Moreover, increase in the outbreak of multidrug resistant Salmonella species is the major problem in the treatment and prevention of foodborne diseases in humans.

Some food products including chicken meat are distributed traditionally unpackaged in our country, while chicken meat is one of the most popular foodstuff. Therefore, chicken meat plays an important role in transfection of Salmonella. Studies have also shown that some of the Salmonella serotypes isolated from meat products are antibiotic resistant and lead to many serious infections in humans.

Objective

The periodic evaluation of Salmonella presence in various foods is necessary to control and reduce salmonellosis in...
human. Therefore, we aimed to evaluate the presence of *Salmonella* in distributed chicken meat in Mahabad city, Iran.

**Materials and Methods**

**Sample Collection and Preparation**

For this study, we collected 100 samples of chicken meat (thigh and breast, 100 g) from a slaughterhouse in Mahabad city. The collected samples were transported on ice to the Microbiology Laboratory of Maragheh Islamic Azad University, Iran.

**Isolation and Identification of Salmonella**

Twenty-five grams of tissue samples was added to 225 mL of lactose broth medium and incubated at 37°C for 24 hours (Brilliant green stain was added as growth inhibitor of gram-positive bacteria). Then, 1 mL of this medium was added to 9 mL of selenit cysteine and incubated at 37°C for 24 hours. One loop of current medium was transferred to MacConkey agar, Salmonella Shigella (SS) agar, and Xylose Lysine Deoxycholate (XLD) agar, separately. Colorless colonies (lactose negative) were considered as suspicious of *Salmonella*. These colonies were cultured in Triple Sugar Iron (TSI) agar, Lysine Iron Agar (LIA), Sulphide Indole Motility (SIM) agar and Urea agar. Furthermore, the reaction of these colonies was assessed in arabinose, raffinose, trehalose, arginine, malonate, ornithine, and salicin media. Finally, *Salmonella* species were identified serologically using polyvalent antiserum (Bahar Afshan Company, Iran).

**Antimicrobial Resistance and Antibiogram**

The sensitivity of isolated *Salmonella* samples to antibiotic was evaluated using disk diffusion method on Mueller-Hinton agar medium (Bahar Afshan Company, Iran) according to the criteria published by the Clinical and Laboratory Standards Institute (CLSI). The used antibiotics were: cephalexin, gentamicin, kanamycin, neomycin, tetracycline, ampicillin, nalidixic acid, cotrimoxazole, and erythromycin.

**Results**

In our study, 7 chicken samples (7%) were contaminated with *Salmonella*. The serotyping results also showed that *S. enteritidis* was the sole serovar of *Salmonella* in distributed chicken raw meat in Mahabad city. All of *S. enteritidis* isolates (100%) showed the most antibiotic sensitivity to erythromycin and ampicillin. All of the tested isolates (100%) also showed resistance to gentamicin (Table 1).

**Discussion**

The results of this study showed that 7% of chicken samples were contaminated with *Salmonella* and serotyping results showed that *S. enteritidis* was the sole serovar. Unlike our study, some studies reported high prevalence of *Salmonella* in chicken meat samples in Iran and other countries. In a study, Dhaher et al showed that 24.76% of chicken samples were contaminated with *Salmonella* in Iraq. Alali et al showed that 31.5% of retail chicken meat samples were contaminated with *Salmonella* in Russia. In another study, Todd reported that the prevalence of *Salmonella* in chicken meat was 13.3% in Ethiopia. High prevalence of *Salmonella* were reported by Tibajjuka, as 42% of chicken samples were contaminated with *Salmonella*. The presence of *Salmonella* might be indicative of poor hygiene and a potential danger to consumers.

In the present study, the most frequently isolated serotype was *S. enteritidis*. Like this study, in several studies the most frequently isolated serotype was *S. enteritidis*. For example, Jalili et al reported that *S. enteritidis* was the most frequently isolated serotype (29%) from chicken meat samples in Iran. On the contrary, Molla and Mesfin showed that *S. braenderup* and *S. typhimurium* were the dominant serotypes in Ethiopia. Moreover, Abdellah et al reported that *S. typhimurium* (40.35%) was the dominant serotype between 4 different serotypes isolated from chicken meat and giblets.

In this study, all of *S. enteritidis* isolates showed the highest antibiotic sensitivity to erythromycin and ampicillin. On the other hand, all of the tested isolates showed resistance to gentamicin. Likewise, resistance to mentioned antibiotics was reported in some other studies on chicken meat worldwide. Our study showed that some *Salmonella* isolates were resistant to tetracycline.

---

Table 1. The Resistance and Sensitivity of Isolated *Salmonella* to Different Antibiotics

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Dose (µg)</th>
<th><em>Salmonella enteritidis</em></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sensitive (%)</td>
<td>Resistant (%)</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>30</td>
<td>4 (57.1)</td>
<td>3 (42.9)</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>30</td>
<td>8 (85.7)</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>Neomycin</td>
<td>10</td>
<td>8 (85.7)</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>30</td>
<td>3 (42.9)</td>
<td>4 (57.1)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>10</td>
<td>7 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>30</td>
<td>8 (85.7)</td>
<td>1 (14.3%)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>10</td>
<td>7 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>30</td>
<td>0 (0%)</td>
<td>7 (100%)</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>30</td>
<td>4 (57.1)</td>
<td>3 (42.9)</td>
</tr>
</tbody>
</table>
Our study showed that 7% of chicken samples were contaminated with *Salmonella*. In this study, we did not find *Salmonella* isolates which were resistant to erythromycin and ampicillin antibiotics. This may be due to the inaccessibility and expensiveness of these antibiotics in Iran, which can reduce its consumption. Therefore, these antibiotics can be used in the treatment of *Salmonella* infections in Iran. However, there is a potential for increased resistance to these antibiotics in the future.

**Authors’ Contributions**
This article was extracted from the MSc project of MAD where SM supervised this project and suggested the problem; MAD and AI and SH participated in determination of sample points, sample preparation procedure and extraction of essential oil. SM wrote and edited the manuscript. All authors read and approved the final manuscript.

**Ethical Approval**
This study does not need to have any ethical approval.

**Conflict of Interest Disclosures**
The authors declare that they have no conflict of interests.

**Financial Support**
No funding was involved.

**Acknowledgments**
This paper was adopted from Mahsa Azizi Dehbokri’s Msc thesis. We would like to express our appreciation to Dr. Geranmayeh for their kind assistance with this project.

**References**
21. Todd EC. Articles-Foodborne and Waterborne Disease in Developing Countries-Africa and the Middle East. Dairy Food


